Science Versus Pure Mathematics

Par : Christopher Portosa Stevens
Offrir maintenant
Ou planifier dans votre panier
Disponible dans votre compte client Decitre ou Furet du Nord dès validation de votre commande. Le format ePub est :
  • Compatible avec une lecture sur My Vivlio (smartphone, tablette, ordinateur)
  • Compatible avec une lecture sur liseuses Vivlio
  • Pour les liseuses autres que Vivlio, vous devez utiliser le logiciel Adobe Digital Edition. Non compatible avec la lecture sur les liseuses Kindle, Remarkable et Sony
Logo Vivlio, qui est-ce ?

Notre partenaire de plateforme de lecture numérique où vous retrouverez l'ensemble de vos ebooks gratuitement

Pour en savoir plus sur nos ebooks, consultez notre aide en ligne ici
C'est si simple ! Lisez votre ebook avec l'app Vivlio sur votre tablette, mobile ou ordinateur :
Google PlayApp Store
  • FormatePub
  • ISBN8201408725
  • EAN9798201408725
  • Date de parution15/05/2021
  • Protection num.pas de protection
  • Infos supplémentairesepub
  • ÉditeurJL

Résumé

I seek to demonstrate that in the evolution and growth of science, the 'underdetermination thesis' of some prominent philosophers and scientists (like Quine, Kuhn, or Feyerabend), that there are always a large number or possibly an infinite number of theories to fit the data or explain empirical patterns, is false. The 'underdetermination thesis' has been debated by physicists, mathematicians, and philosophers for several centuries, and I seek to show that, in science, at any point in the evolution and development of science and its various branches, there are only a few or relatively small number of concepts and theories in any scientific field that compete with each other to explain the phenomena under the jurisdiction of any scientific branch or field.
I also provide a review of kinds and styles of scientific explanation, including kinds and styles of scientific explanation used by scientists that go beyond traditional or classic categories of scientific explanation (discussed by Popper, Hempel, or Nagel) such as covering laws or causal models.
I seek to demonstrate that in the evolution and growth of science, the 'underdetermination thesis' of some prominent philosophers and scientists (like Quine, Kuhn, or Feyerabend), that there are always a large number or possibly an infinite number of theories to fit the data or explain empirical patterns, is false. The 'underdetermination thesis' has been debated by physicists, mathematicians, and philosophers for several centuries, and I seek to show that, in science, at any point in the evolution and development of science and its various branches, there are only a few or relatively small number of concepts and theories in any scientific field that compete with each other to explain the phenomena under the jurisdiction of any scientific branch or field.
I also provide a review of kinds and styles of scientific explanation, including kinds and styles of scientific explanation used by scientists that go beyond traditional or classic categories of scientific explanation (discussed by Popper, Hempel, or Nagel) such as covering laws or causal models.