An Introduction to Statistical Learning with Applications in R - Grand Format

Edition en anglais

Note moyenne 
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of... Lire la suite
69,54 € Neuf
  • Grand format
    • Expédié sous 6 à 12 jours
      69,54 €
    • Expédié sous 2 à 4 semaines
      84,40 €
Expédié sous 6 à 12 jours
Livré chez vous entre le 27 novembre et le 3 décembre
En librairie

Résumé

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications.
Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.
Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data.
The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Caractéristiques

  • Date de parution
    01/09/2017
  • Editeur
  • Collection
  • ISBN
    978-1-4614-7137-0
  • EAN
    9781461471370
  • Format
    Grand Format
  • Présentation
    Relié
  • Nb. de pages
    426 pages
  • Poids
    0.85 Kg
  • Dimensions
    16,2 cm × 24,2 cm × 2,2 cm

Avis libraires et clients

Avis audio

Écoutez ce qu'en disent nos libraires !

À propos des auteurs

Gareth James is a professor of data sciences and operations at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area. Daniela Witten is an associate professor of statistics and biostatistics at the University Washington.
Her research focuses largely on statistical machine learning in the high-dimensional setting, with an emphasis on unsupervised learning. Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, an-are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title.
Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap.

Des mêmes auteurs

Derniers produits consultés

69,54 €